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Abstract. A new discrete isospectral problem and the corresponding hierarchy of nonlinear
differential-difference equations are proposed. It is shown that the hierarchy of differential-
difference equations possesses the Hamiltonian structures. A Darboux transformation for the
discrete spectral problem is found. As an application, two-soliton solutions for the first system
of differential-difference equations in the hierarchy are given.

The study of integrable differential-difference systems has aroused increasing interest in the
last few years [1–4]. A key feature of integrable differential-difference equations is the
fact that they can be expressed as the compatibility condition of two linear discrete spectral
problems, i.e. a Lax pair, which plays a crucial role in the inverse scattering transformation
(IST) [1, 5] and Darboux transformation (DT) [6–8]. A major difficulty, however, is the
problem of associating nonlinear differential-difference equations with appropriate spectral
problems. Therefore it interests us to search for a new discrete spectral problem and the
corresponding nonlinear differential-difference equations.

In this letter we first introduce a discrete spectral problem

yn+1 = Unyn Un =
(

1+ λunvn un
λvn 1

)
(1)

where un and vn are two potentials,λ is a constant spectral parameter, and derive the
corresponding hierarchy of nonlinear differential-difference equations. The first system of
nonlinear differential-difference equations in the hierarchy is as follows

unt = 1

vn+1
− 1

vn
vnt = 1

un
− 1

un−1
. (2)

Then using the gauge transformation, we establish a DT of spectral problem (1). As an
application, two-soliton solutions of equations (1) are given.

In order to derive a hierarchy of differential-difference equations associated with (1),
we first solve the stationary discrete zero-curvature equation:

Vn+1Un − UnVn = 0 Vn =
(
An λ−1Bn
Cn −An

)
. (3)
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It is easy to see that (3) is equivalent to

1Bn − λun(vnBn − An+1− An) = 0

−1∗Cn+1+ λvn(unCn+1− An+1− An) = 0

1An = unCn+1− vnBn
(4)

where1hn = hn+1− hn,1∗hn = hn−1− hn. Substituting the following expansions

An =
∑
j>0

A(j)n λ
−j Bn =

∑
j>0

B(j)n λ−j Cn =
∑
j>0

C(j)n λ−j (5)

into (4), we arrive at

vnB
(0)
n − A(0)n+1− A(0)n = 0

unC
(0)
n+1− A(0)n+1− A(0)n = 0

1A(0)n = unC(0)n+1− vnB(0)n
(6)

and

1B(j−1)
n = un(vnB(j)n − A(j)n+1− A(j)n )

−1∗C(j−1)
n+1 = vn(A(j)n+1+ A(j)n − unC(j)n+1)

1A(j)n = unC(j)n+1− vnB(j)n j > 1.

(7)

The above recursion equations can be solved successively to deduce the results

A(0)n = 1
2α0(constant) B(0)n = α0v

−1
n C(0)n = α0u

−1
n−1

A(1)n = −
α0

un−1vn
B(1)n = −

α0

v2
n

(
1

un−1
+ 1

un

)
C(1)n = −

α0

u2
n−1

(
1

vn−1
+ 1

vn

)
.

Equation (7) can be rewritten as

KnG
(j−1)
n = JnG(j)

n G(0)
n = α0(u

−1
n , v

−1
n )

T (8)

with G(j)
n = (C(j)n+1, B

(j)
n )T . HereKn andJn are two skew-symmetric operators

Kn =
(

0 1

−1∗ 0

)
Jn =

(−u2
n − 2un1−1un 2unvn + 2un1−1vn
2vn1−1un −v2

n − 2vn1−1vn

)
.

In fact, a direct calculation shows that

〈Kf, g〉 = −〈f,Kg〉 〈Jf, g〉 = −〈f, Jg〉 (9)

in view of equality∑
n∈Z

hn1
−1ln = −

∑
n∈Z
(hnln + ln1−1hn) (10)

wherehn and ln are scalar functions,fn = (f (1)n , f (2)n )T , gn = (g(1)n , g(2)n )T

〈f, g〉 =
∑
n∈Z

2∑
i=1

f (i)n g
(i)
n 1−1hn = 1

2

( ∑
j6n−1

−
∑
j>n

)
hj .

This means that the operatorsKn andJn are skew-symmetric. Letyn satisfy the eigenvalue
problem (1) and the auxiliary problem

ynt = V (m)n yn V (m)n = λ
(
A(m)n λ−1B(m)n

C(m)n −A(m)n

)
(11)
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with

A(m)n =
m∑
j=0

A(j)n λ
m−j B(m)n =

m∑
j=0

B(j)n λm−j C(m)n =
m∑
j=0

C(j)n λm−j .

Then the compatibility condition between (1) and (11) yields a discrete zero-curvature
equation,Unt + UnV (m)n − V (m)n+1Un = 0, which is equivalent to the hierarchy of nonlinear
differential-difference equations

(unt , vnt )
T = KnG(m)

n m > 0. (12)

As α0 = 1, the first two systems of differential-difference equations in the hierarchy (12)
are equations (2) and the following:

unt = 1

v2
n

(
1

un−1
+ 1

un

)
− 1

v2
n+1

(
1

un
+ 1

un+1

)
vnt = 1

u2
n−1

(
1

vn
+ 1

vn−1

)
− 1

u2
n

(
1

vn+1
+ 1

vn

)
.

(13)

To establish the Hamiltonian structures of differential-difference equations (12), we
apply the trace identity [3]:(
δ

δun
,
δ

δvn

)
tr

(
V̂n
∂Un

∂λ

)
=
[
λ−ε

(
∂

∂λ

)
λε
](

tr

(
V̂n
∂Un

∂un

)
, tr

(
V̂n
∂Un

∂vn

))
(14)

where V̂n = VnU
−1
n , tr means trace of a matrix,ε is a constant to be fixed. It is easy to

calculate that

tr

(
V̂n
∂Un

∂λ

)
= λ−1vnBn tr

(
V̂n
∂Un

∂un

)
= 2λvnAn − λv2

nBn + Cn

tr

(
V̂n
∂Un

∂vn

)
= Bn.

(15)

Noticing (4), we have

2λvnAn − λv2
nBn + Cn = Cn+1. (16)

Substituting (15) and (16) into (14) and comparing coefficients for the same power ofλ,
we obtain

(δ/δun, δ/δvn)vnB
(j)
n = (ε − j)(C(j)n+1, B

(j)
n ) (17)

andε(u−1
n , v

−1
n ) = 0 which impliesε = 0. Hence we have

(δ/δun, δ/δvn)
T Hj = G(j)

n Hj = −1

j
vnB

(j)
n j > 1. (18)

It is not difficult to verify that

(δ/δun, δ/δvn)
T H0 = G(0)

n H0 = α0 ln unvn. (19)

Therefore we get the Hamiltonian form of the hierarchy (12)(
unt
vnt

)
= KnG(m)

n = Kn
(
δ/δun
δ/δvn

)
Hm m > 0. (20)

In what follows, we shall construct the DT of eigenvalue problem (1). Letφn =
(φ1
n, φ

2
n)
T , ψn = (ψ1

n , ψ
2
n)
T be two basic solutions of (1) and use(φn, ψn) to define a 2× 2

matrix Tn by

Tn =
(

1+ λan bn
λcn 1+ λdn

)
(21)
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with

an = α1(n)− α2(n)

λ1α2(n)− λ2α1(n)
bn = λ2− λ1

λ1α2(n)− λ2α1(n)

cn = (λ2− λ1)α1(n)α2(n)

λ1λ2(α1(n)− α2(n))
dn = λ1α2(n)− λ2α1(n)

λ1λ2(α1(n)− α2(n))

(22)

αi(n) = φ2
n(λi)− γiψ2

n(λi)

φ1
n(λi)− γiψ1

n(λi)
i = 1, 2 (23)

where parametersλi and γi (λ1 6= λ2, γ1 6= γ2) are suitably chosen such that all the
denominators in (22) and (23) are not zero. From (1) and (23) we have

αi(n+ 1) = µi(n)/νi(n) i = 1, 2 (24)

with

µi(n) = λivn + αi(n) νi(n) = 1+ λiunvn + unαi(n).
Using (22) and (24), we have

an+1 = µ1(n)ν2(n)− µ2(n)ν1(n)

λ1µ2(n)ν1(n)− λ2µ1(n)ν2(n)
bn+1 = (λ2− λ1)ν1(n)ν2(n)

λ1µ2(n)ν1(n)− λ2µ1(n)ν2(n)

cn+1 = (λ2− λ1)µ1(n)µ2(n)

λ1λ2(µ1(n)ν2(n)− µ2(n)ν1(n))
dn+1 = λ1µ2(n)ν1(n)− λ2µ1(n)ν2(n)

λ1λ2(µ1(n)ν2(n)− µ2(n)ν1(n))
.

(25)

Through tedious calculations, we can verify from (25) and (22) that the equalities

1an + vnbn − cn+1(un +1bn) = 0 (26)

(uncn+1+ dn+1)(un +1bn)− unan+1 = 0 (27)

(an − vnbn)(vn +1cn)− vndn = 0. (28)

Noticing (22) and (21), we have

detTn = 1

λ1λ2
(λ− λ1)(λ− λ2). (29)

Now we introduce a gauge transformation

ŷn = Tnyn (30)

which transforms (1) into an eigenvalue problem ofŷn in the caseλ 6= λi(i = 1, 2) as
follows

ŷn+1 = Ûnŷn (31)

with

Ûn = Tn+1UnT
−1
n . (32)

It turns out thatλ = λi(i = 1, 2) are removable isolated singularities ofÛn (see (33) below).
Thus we can definêUn for all λ by analytic continuation.

Proposition 1.The matrixÛn determined by (32) has the same form asUn:

Ûn =
(

1+ λûnv̂n ûn
λv̂n 1

)
(33)

where the transformation formulae from old potentialsun, vn into new ones are as follows

ûn = un +1bn v̂n = vn +1cn. (34)

The transformation (30) and (34):(yn; un, vn) → (ŷn; ûn, v̂n) is usually called a DT of
eigenvalue problem (1).
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Proof. Let T −1
n = T ∗n / detTn and

Tn+1UnT
∗
n =

(
f11(λ, n) f12(λ, n)

f21(λ, n) f22(λ, n)

)
. (35)

It is easy to see thatf11(λ, n), f21(λ, n) or f12(λ, n), f22(λ, n) are first-order polynomials
in λ or zero-order polynomial inλ, respectively. From (22), we obtain

1+ λian = −bnαi(n) 1+ λidn = −λicnα−1
i (n) i = 1, 2. (36)

By using (36) and (23), it can be verified thatλ1 andλ2 are roots offij (λ, n), i, j = 1, 2.
Therefore, noticing (29) we have

Tn+1UnT
∗
n = (detTn)(P

(0)
n + λP (1)n ) P (1)n =

(
p
(1)
11 (n) 0
p
(1)
21 (n) 0

)
(37)

whereP (0)n andP (1)n are independent ofλ. Equation (37) can be written as

Tn+1Un = (P (0)n + λP (1)n )Tn. (38)

Equating the coefficients ofλ andλ0 in (38), we find

P (0)n =
(

1 ûn
0 1

)
p
(1)
11 (n) = unvn + vnbn+1+1an − (un +1bn)cn p

(1)
21 (n) = v̂n.

(39)

Substituting (26) into (39) yields

p
(1)
11 (n) = (un +1bn)(vn +1cn) = ûnv̂n.

The proof is completed. �

Now let us consider the time part of the Lax pair for (2)

ynt = V (0)n yn V (0)n =
( 1

2λ v−1
n

λu−1
n−1 − 1

2λ

)
. (40)

Differentiating ŷn = Tnyn with respect tot yields

ŷnt = V̂ (0)n ŷn V̂ (0)n = (Tnt + TnV (0)n )T −1
n . (41)

Let the two basic solutionsφ,ψ of (1) satisfy equation (40) as well. Then we can prove
the following assertion.

Proposition 2.The matrixV̂ (0)n defined by (41) has the same form asV (0)n , in which the old
potentialsun, vn are mapped intôun, v̂n according to the same DT (34).

Proof. Let T −1
n = T ∗n / detTn and

(Tnt + TnV (0)n )T ∗n =
(
g11(λ, n) g12(λ, n)

g21(λ, n) g22(λ, n)

)
. (42)

Through direct calculations, we know thatλ−1g11, λ
−1g21, λ

−1
22 , and g12 are quadratic

polynomials inλ. By virtue of (36), (23) and (41), we have

λiant = −bntαi(n)− bnαit (n)
dnt = −cntα−1

i (n)+ cnα−2
i (n)αit (n)

αit (n) = λiu−1
n−1− λiαi(n)− v−1

n α
2
i (n).

(43)
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It is easily verified by (36) and (43) thatλ1 and λ2 are roots ofgij (λ, n), i, j = 1, 2.
Therefore we have

(Tnt + TnV (0)n )T ∗n = (detTn)

(
λq(11)

n q(12)
n

λq(21)
n λq(22)

n

)
that is

(Tnt + TnV (0)n ) =
(
λq(11)

n q(12)
n

λq(21)
n λq(22)

n

)
Tn (44)

whereqijn (i, j = 1, 2) are independent ofλ. Comparing the coefficients ofλ2 andλ in (44),
we get

q(11)
n = 1

2 q(22)
n = 1

2 q(21)
n = 1

anun−1
(un−1cn + dn) q(12)

n = an − bnvn
dnvn

(45)

which together with (27, 28) imply

q(21)
n = 1

un−1+1bn−1
= 1

ûn−1
q(12)
n = 1

vn +1cn =
1

v̂n
. �

Since the differential-difference equation (2) is equivalent to the discrete zero-curvature
equation,Unt + UnV (0)n − V (0)n+1Un = 0, from propositions 1 and 2 we have the following.

Proposition 3.Every solution(un, vn) of (2) is mapped into a new solution(ûn, v̂n) of (2)
under the DT (34).

In what follows, we shall apply the DT to give explicit solutions of (2). Substituting
the trivial solutions,un = vn = 1, of (2) into (1) and (40), two real basic solutionsφn, ψn
are chosen as

βn exp

(
t

2

√
λ2+ 4λ

)(
2√

λ2+ 4λ− λ
)

β−n exp

(
− t

2

√
λ2+ 4λ

)(
2

−λ−√λ2+ 4λ

)
with β = 1

2(2+ λ +
√
λ2+ 4λ), λ ∈ I0 = (−∞,−4) ∪ (0,+∞). Noticing (22) and (23),

new explicit solutions of (2) are obtained with the help of the DT (34):

ûn = 1+1 (β2n
1 eδ1t − γ1)(β

2n
2 eδ2t − γ2)

ξ1+ ξ2β
2n
1 eδ1t + ξ3β

2n
2 eδ2t + ξ4(β1β2)2ne(δ1+δ2)t

v̂n = 1+1 (β2n
1 eδ1t + η1)(β

2n
2 eδ2t + η2)

ζ1+ ζ2β
2n
1 eδ1t + ζ3β

2n
2 eδ2t + ζ4(β1β2)2ne(δ1+δ2)t

(46)

where

δi =
√
λ2
i + 4λi βi = β(λi) ηi = γi(δi + λi)

δi − λi i = 1, 2

ξ1 = γ1γ2(δ1λ2− δ2λ1)

2(λ2− λ1)
ξ2 = γ2(δ1λ2+ δ2λ1)

2(λ2− λ1)

ξ3 = γ1(δ1λ2+ δ2λ1)

2(λ1− λ2)
ξ4 = δ1λ2− δ2λ1

2(λ1− λ2)

ζ1 = 2λ1λ2γ1γ2(δ1− δ2+ λ1− λ2)

(λ1− λ2)(δ1− λ1)(δ2− λ2)
ζ2 = 2λ1λ2γ2(δ1+ δ2− λ1+ λ2)

(λ1− λ2)(δ1− λ1)(δ2− λ2)

ζ3 = 2λ1λ2γ1(δ1+ δ2+ λ1− λ2)

(λ2− λ1)(δ1− λ1)(δ2− λ2)
ζ4 = 2λ1λ2(δ1− δ2− λ1+ λ2)

(λ2− λ1)(δ1− λ1)(δ2− λ2)
.
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Figure 1. The two-soliton solutions withγ1 = −3, γ2 = 5, λ1 = −5, λ2 = −10.

The solutions (46) are two-soliton solutions if the parameters are chosen asγ1 = −3,
γ2 = 5, λ1 = −5, λ2 = −10 (see figure 1). Further, if the two-soliton solutions are taken
as the new starting point, we can make the DT once again by (34) and engender another
set of new solutions. This process can be done continually and will usually yield a series
of multi-soliton solutions.
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