A new hierarchy of integrable differential-difference equations and Darboux transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L677
(http://iopscience.iop.org/0305-4470/31/38/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:12

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A new hierarchy of integrable differential-difference equations and Darboux transformation

Yongtang Wu \dagger and Xianguo Geng \ddagger
\dagger Department of Computing Studies, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong, People's Republic of China
\ddagger CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China and Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China

Received 29 June 1998

Abstract

A new discrete isospectral problem and the corresponding hierarchy of nonlinear differential-difference equations are proposed. It is shown that the hierarchy of differentialdifference equations possesses the Hamiltonian structures. A Darboux transformation for the discrete spectral problem is found. As an application, two-soliton solutions for the first system of differential-difference equations in the hierarchy are given.

The study of integrable differential-difference systems has aroused increasing interest in the last few years $[1-4]$. A key feature of integrable differential-difference equations is the fact that they can be expressed as the compatibility condition of two linear discrete spectral problems, i.e. a Lax pair, which plays a crucial role in the inverse scattering transformation (IST) $[1,5]$ and Darboux transformation (DT) [6-8]. A major difficulty, however, is the problem of associating nonlinear differential-difference equations with appropriate spectral problems. Therefore it interests us to search for a new discrete spectral problem and the corresponding nonlinear differential-difference equations.

In this letter we first introduce a discrete spectral problem

$$
y_{n+1}=U_{n} y_{n} \quad U_{n}=\left(\begin{array}{cc}
1+\lambda u_{n} v_{n} & u_{n} \tag{1}\\
\lambda v_{n} & 1
\end{array}\right)
$$

where u_{n} and v_{n} are two potentials, λ is a constant spectral parameter, and derive the corresponding hierarchy of nonlinear differential-difference equations. The first system of nonlinear differential-difference equations in the hierarchy is as follows

$$
\begin{equation*}
u_{n t}=\frac{1}{v_{n+1}}-\frac{1}{v_{n}} \quad v_{n t}=\frac{1}{u_{n}}-\frac{1}{u_{n-1}} . \tag{2}
\end{equation*}
$$

Then using the gauge transformation, we establish a DT of spectral problem (1). As an application, two-soliton solutions of equations (1) are given.

In order to derive a hierarchy of differential-difference equations associated with (1), we first solve the stationary discrete zero-curvature equation:

$$
V_{n+1} U_{n}-U_{n} V_{n}=0 \quad V_{n}=\left(\begin{array}{cc}
A_{n} & \lambda^{-1} B_{n} \tag{3}\\
C_{n} & -A_{n}
\end{array}\right)
$$

It is easy to see that (3) is equivalent to

$$
\begin{align*}
& \Delta B_{n}-\lambda u_{n}\left(v_{n} B_{n}-A_{n+1}-A_{n}\right)=0 \\
& -\Delta^{*} C_{n+1}+\lambda v_{n}\left(u_{n} C_{n+1}-A_{n+1}-A_{n}\right)=0 \tag{4}\\
& \Delta A_{n}=u_{n} C_{n+1}-v_{n} B_{n}
\end{align*}
$$

where $\Delta h_{n}=h_{n+1}-h_{n}, \Delta^{*} h_{n}=h_{n-1}-h_{n}$. Substituting the following expansions

$$
\begin{equation*}
A_{n}=\sum_{j \geqslant 0} A_{n}^{(j)} \lambda^{-j} \quad B_{n}=\sum_{j \geqslant 0} B_{n}^{(j)} \lambda^{-j} \quad C_{n}=\sum_{j \geqslant 0} C_{n}^{(j)} \lambda^{-j} \tag{5}
\end{equation*}
$$

into (4), we arrive at

$$
\begin{align*}
& v_{n} B_{n}^{(0)}-A_{n+1}^{(0)}-A_{n}^{(0)}=0 \\
& u_{n} C_{n+1}^{(0)}-A_{n+1}^{(0)}-A_{n}^{(0)}=0 \tag{6}\\
& \Delta A_{n}^{(0)}=u_{n} C_{n+1}^{(0)}-v_{n} B_{n}^{(0)}
\end{align*}
$$

and

$$
\begin{align*}
& \Delta B_{n}^{(j-1)}=u_{n}\left(v_{n} B_{n}^{(j)}-A_{n+1}^{(j)}-A_{n}^{(j)}\right) \\
& -\Delta^{*} C_{n+1}^{(j-1)}=v_{n}\left(A_{n+1}^{(j)}+A_{n}^{(j)}-u_{n} C_{n+1}^{(j)}\right) \tag{7}\\
& \Delta A_{n}^{(j)}=u_{n} C_{n+1}^{(j)}-v_{n} B_{n}^{(j)} \quad j \geqslant 1 .
\end{align*}
$$

The above recursion equations can be solved successively to deduce the results
$A_{n}^{(0)}=\frac{1}{2} \alpha_{0}$ (constant) $\quad B_{n}^{(0)}=\alpha_{0} v_{n}^{-1} \quad C_{n}^{(0)}=\alpha_{0} u_{n-1}^{-1}$
$A_{n}^{(1)}=-\frac{\alpha_{0}}{u_{n-1} v_{n}} \quad B_{n}^{(1)}=-\frac{\alpha_{0}}{v_{n}^{2}}\left(\frac{1}{u_{n-1}}+\frac{1}{u_{n}}\right) \quad C_{n}^{(1)}=-\frac{\alpha_{0}}{u_{n-1}^{2}}\left(\frac{1}{v_{n-1}}+\frac{1}{v_{n}}\right)$.
Equation (7) can be rewritten as

$$
\begin{equation*}
K_{n} G_{n}^{(j-1)}=J_{n} G_{n}^{(j)} \quad G_{n}^{(0)}=\alpha_{0}\left(u_{n}^{-1}, v_{n}^{-1}\right)^{T} \tag{8}
\end{equation*}
$$

with $G_{n}^{(j)}=\left(C_{n+1}^{(j)}, B_{n}^{(j)}\right)^{T}$. Here K_{n} and J_{n} are two skew-symmetric operators
$K_{n}=\left(\begin{array}{cc}0 & \Delta \\ -\Delta^{*} & 0\end{array}\right) \quad J_{n}=\left(\begin{array}{cc}-u_{n}^{2}-2 u_{n} \Delta^{-1} u_{n} & 2 u_{n} v_{n}+2 u_{n} \Delta^{-1} v_{n} \\ 2 v_{n} \Delta^{-1} u_{n} & -v_{n}^{2}-2 v_{n} \Delta^{-1} v_{n}\end{array}\right)$.
In fact, a direct calculation shows that

$$
\begin{equation*}
\langle K f, g\rangle=-\langle f, K g\rangle \quad\langle J f, g\rangle=-\langle f, J g\rangle \tag{9}
\end{equation*}
$$

in view of equality

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} h_{n} \Delta^{-1} l_{n}=-\sum_{n \in \mathbb{Z}}\left(h_{n} l_{n}+l_{n} \Delta^{-1} h_{n}\right) \tag{10}
\end{equation*}
$$

where h_{n} and l_{n} are scalar functions, $f_{n}=\left(f_{n}^{(1)}, f_{n}^{(2)}\right)^{T}, g_{n}=\left(g_{n}^{(1)}, g_{n}^{(2)}\right)^{T}$

$$
\langle f, g\rangle=\sum_{n \in \mathbb{Z}} \sum_{i=1}^{2} f_{n}^{(i)} g_{n}^{(i)} \quad \Delta^{-1} h_{n}=\frac{1}{2}\left(\sum_{j \leqslant n-1}-\sum_{j \geqslant n}\right) h_{j} .
$$

This means that the operators K_{n} and J_{n} are skew-symmetric. Let y_{n} satisfy the eigenvalue problem (1) and the auxiliary problem

$$
y_{n t}=V_{n}^{(m)} y_{n} \quad V_{n}^{(m)}=\lambda\left(\begin{array}{cc}
\mathcal{A}_{n}^{(m)} & \lambda^{-1} \mathcal{B}_{n}^{(m)} \tag{11}\\
\mathcal{C}_{n}^{(m)} & -\mathcal{A}_{n}^{(m)}
\end{array}\right)
$$

with

$$
\mathcal{A}_{n}^{(m)}=\sum_{j=0}^{m} A_{n}^{(j)} \lambda^{m-j} \quad \mathcal{B}_{n}^{(m)}=\sum_{j=0}^{m} B_{n}^{(j)} \lambda^{m-j} \quad \mathcal{C}_{n}^{(m)}=\sum_{j=0}^{m} C_{n}^{(j)} \lambda^{m-j}
$$

Then the compatibility condition between (1) and (11) yields a discrete zero-curvature equation, $U_{n t}+U_{n} V_{n}^{(m)}-V_{n+1}^{(m)} U_{n}=0$, which is equivalent to the hierarchy of nonlinear differential-difference equations

$$
\begin{equation*}
\left(u_{n t}, v_{n t}\right)^{T}=K_{n} G_{n}^{(m)} \quad m \geqslant 0 \tag{12}
\end{equation*}
$$

As $\alpha_{0}=1$, the first two systems of differential-difference equations in the hierarchy (12) are equations (2) and the following:

$$
\begin{align*}
& u_{n t}=\frac{1}{v_{n}^{2}}\left(\frac{1}{u_{n-1}}+\frac{1}{u_{n}}\right)-\frac{1}{v_{n+1}^{2}}\left(\frac{1}{u_{n}}+\frac{1}{u_{n+1}}\right) \tag{13}\\
& v_{n t}=\frac{1}{u_{n-1}^{2}}\left(\frac{1}{v_{n}}+\frac{1}{v_{n-1}}\right)-\frac{1}{u_{n}^{2}}\left(\frac{1}{v_{n+1}}+\frac{1}{v_{n}}\right) .
\end{align*}
$$

To establish the Hamiltonian structures of differential-difference equations (12), we apply the trace identity [3]:
$\left(\frac{\delta}{\delta u_{n}}, \frac{\delta}{\delta v_{n}}\right) \operatorname{tr}\left(\hat{V}_{n} \frac{\partial U_{n}}{\partial \lambda}\right)=\left[\lambda^{-\varepsilon}\left(\frac{\partial}{\partial \lambda}\right) \lambda^{\varepsilon}\right]\left(\operatorname{tr}\left(\hat{V}_{n} \frac{\partial U_{n}}{\partial u_{n}}\right), \operatorname{tr}\left(\hat{V}_{n} \frac{\partial U_{n}}{\partial v_{n}}\right)\right)$
where $\hat{V}_{n}=V_{n} U_{n}^{-1}, \operatorname{tr}$ means trace of a matrix, ε is a constant to be fixed. It is easy to calculate that

$$
\begin{align*}
& \operatorname{tr}\left(\hat{V}_{n} \frac{\partial U_{n}}{\partial \lambda}\right)=\lambda^{-1} v_{n} B_{n} \quad \operatorname{tr}\left(\hat{V}_{n} \frac{\partial U_{n}}{\partial u_{n}}\right)=2 \lambda v_{n} A_{n}-\lambda v_{n}^{2} B_{n}+C_{n} \\
& \operatorname{tr}\left(\hat{V}_{n} \frac{\partial U_{n}}{\partial v_{n}}\right)=B_{n} \tag{15}
\end{align*}
$$

Noticing (4), we have

$$
\begin{equation*}
2 \lambda v_{n} A_{n}-\lambda v_{n}^{2} B_{n}+C_{n}=C_{n+1} \tag{16}
\end{equation*}
$$

Substituting (15) and (16) into (14) and comparing coefficients for the same power of λ, we obtain

$$
\begin{equation*}
\left(\delta / \delta u_{n}, \delta / \delta v_{n}\right) v_{n} B_{n}^{(j)}=(\varepsilon-j)\left(C_{n+1}^{(j)}, B_{n}^{(j)}\right) \tag{17}
\end{equation*}
$$

and $\varepsilon\left(u_{n}^{-1}, v_{n}^{-1}\right)=0$ which implies $\varepsilon=0$. Hence we have

$$
\begin{equation*}
\left(\delta / \delta u_{n}, \delta / \delta v_{n}\right)^{T} H_{j}=G_{n}^{(j)} \quad H_{j}=-\frac{1}{j} v_{n} B_{n}^{(j)} \quad j \geqslant 1 \tag{18}
\end{equation*}
$$

It is not difficult to verify that

$$
\begin{equation*}
\left(\delta / \delta u_{n}, \delta / \delta v_{n}\right)^{T} H_{0}=G_{n}^{(0)} \quad H_{0}=\alpha_{0} \ln u_{n} v_{n} \tag{19}
\end{equation*}
$$

Therefore we get the Hamiltonian form of the hierarchy (12)

$$
\begin{equation*}
\binom{u_{n t}}{v_{n t}}=K_{n} G_{n}^{(m)}=K_{n}\binom{\delta / \delta u_{n}}{\delta / \delta v_{n}} H_{m} \quad m \geqslant 0 . \tag{20}
\end{equation*}
$$

In what follows, we shall construct the DT of eigenvalue problem (1). Let $\phi_{n}=$ $\left(\phi_{n}^{1}, \phi_{n}^{2}\right)^{T}, \psi_{n}=\left(\psi_{n}^{1}, \psi_{n}^{2}\right)^{T}$ be two basic solutions of (1) and use $\left(\phi_{n}, \psi_{n}\right)$ to define a 2×2 matrix T_{n} by

$$
T_{n}=\left(\begin{array}{cc}
1+\lambda a_{n} & b_{n} \tag{21}\\
\lambda c_{n} & 1+\lambda d_{n}
\end{array}\right)
$$

with

$$
\begin{array}{lc}
a_{n}=\frac{\alpha_{1}(n)-\alpha_{2}(n)}{\lambda_{1} \alpha_{2}(n)-\lambda_{2} \alpha_{1}(n)} & b_{n}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \alpha_{2}(n)-\lambda_{2} \alpha_{1}(n)} \\
c_{n}=\frac{\left(\lambda_{2}-\lambda_{1}\right) \alpha_{1}(n) \alpha_{2}(n)}{\lambda_{1} \lambda_{2}\left(\alpha_{1}(n)-\alpha_{2}(n)\right)} & d_{n}=\frac{\lambda_{1} \alpha_{2}(n)-\lambda_{2} \alpha_{1}(n)}{\lambda_{1} \lambda_{2}\left(\alpha_{1}(n)-\alpha_{2}(n)\right)} \\
\alpha_{i}(n)=\frac{\phi_{n}^{2}\left(\lambda_{i}\right)-\gamma_{i} \psi_{n}^{2}\left(\lambda_{i}\right)}{\phi_{n}^{1}\left(\lambda_{i}\right)-\gamma_{i} \psi_{n}^{1}\left(\lambda_{i}\right)} & i=1,2 \tag{23}
\end{array}
$$

where parameters λ_{i} and $\gamma_{i}\left(\lambda_{1} \neq \lambda_{2}, \gamma_{1} \neq \gamma_{2}\right)$ are suitably chosen such that all the denominators in (22) and (23) are not zero. From (1) and (23) we have

$$
\begin{equation*}
\alpha_{i}(n+1)=\mu_{i}(n) / v_{i}(n) \quad i=1,2 \tag{24}
\end{equation*}
$$

with

$$
\mu_{i}(n)=\lambda_{i} v_{n}+\alpha_{i}(n) \quad v_{i}(n)=1+\lambda_{i} u_{n} v_{n}+u_{n} \alpha_{i}(n)
$$

Using (22) and (24), we have
$a_{n+1}=\frac{\mu_{1}(n) \nu_{2}(n)-\mu_{2}(n) \nu_{1}(n)}{\lambda_{1} \mu_{2}(n) \nu_{1}(n)-\lambda_{2} \mu_{1}(n) \nu_{2}(n)} \quad b_{n+1}=\frac{\left(\lambda_{2}-\lambda_{1}\right) \nu_{1}(n) \nu_{2}(n)}{\lambda_{1} \mu_{2}(n) \nu_{1}(n)-\lambda_{2} \mu_{1}(n) \nu_{2}(n)}$
$c_{n+1}=\frac{\left(\lambda_{2}-\lambda_{1}\right) \mu_{1}(n) \mu_{2}(n)}{\lambda_{1} \lambda_{2}\left(\mu_{1}(n) \nu_{2}(n)-\mu_{2}(n) \nu_{1}(n)\right)} \quad d_{n+1}=\frac{\lambda_{1} \mu_{2}(n) \nu_{1}(n)-\lambda_{2} \mu_{1}(n) \nu_{2}(n)}{\lambda_{1} \lambda_{2}\left(\mu_{1}(n) \nu_{2}(n)-\mu_{2}(n) \nu_{1}(n)\right)}$.
Through tedious calculations, we can verify from (25) and (22) that the equalities

$$
\begin{align*}
& \Delta a_{n}+v_{n} b_{n}-c_{n+1}\left(u_{n}+\Delta b_{n}\right)=0 \tag{26}\\
& \left(u_{n} c_{n+1}+d_{n+1}\right)\left(u_{n}+\Delta b_{n}\right)-u_{n} a_{n+1}=0 \tag{27}\\
& \left(a_{n}-v_{n} b_{n}\right)\left(v_{n}+\Delta c_{n}\right)-v_{n} d_{n}=0 \tag{28}
\end{align*}
$$

Noticing (22) and (21), we have

$$
\begin{equation*}
\operatorname{det} T_{n}=\frac{1}{\lambda_{1} \lambda_{2}}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \tag{29}
\end{equation*}
$$

Now we introduce a gauge transformation

$$
\begin{equation*}
\hat{y}_{n}=T_{n} y_{n} \tag{30}
\end{equation*}
$$

which transforms (1) into an eigenvalue problem of \hat{y}_{n} in the case $\lambda \neq \lambda_{i}(i=1,2)$ as follows

$$
\begin{equation*}
\hat{y}_{n+1}=\hat{U}_{n} \hat{y}_{n} \tag{31}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{U}_{n}=T_{n+1} U_{n} T_{n}^{-1} \tag{32}
\end{equation*}
$$

It turns out that $\lambda=\lambda_{i}(i=1,2)$ are removable isolated singularities of \hat{U}_{n} (see (33) below). Thus we can define \hat{U}_{n} for all λ by analytic continuation.
Proposition 1. The matrix \hat{U}_{n} determined by (32) has the same form as U_{n} :

$$
\hat{U}_{n}=\left(\begin{array}{cc}
1+\lambda \hat{u}_{n} \hat{v}_{n} & \hat{u}_{n} \tag{33}\\
\lambda \hat{v}_{n} & 1
\end{array}\right)
$$

where the transformation formulae from old potentials u_{n}, v_{n} into new ones are as follows

$$
\begin{equation*}
\hat{u}_{n}=u_{n}+\Delta b_{n} \quad \hat{v}_{n}=v_{n}+\Delta c_{n} \tag{34}
\end{equation*}
$$

The transformation (30) and (34): $\left(y_{n} ; u_{n}, v_{n}\right) \rightarrow\left(\hat{y}_{n} ; \hat{u}_{n}, \hat{v}_{n}\right)$ is usually called a DT of eigenvalue problem (1).

Proof. Let $T_{n}^{-1}=T_{n}^{*} / \operatorname{det} T_{n}$ and

$$
T_{n+1} U_{n} T_{n}^{*}=\left(\begin{array}{ll}
f_{11}(\lambda, n) & f_{12}(\lambda, n) \tag{35}\\
f_{21}(\lambda, n) & f_{22}(\lambda, n)
\end{array}\right) .
$$

It is easy to see that $f_{11}(\lambda, n), f_{21}(\lambda, n)$ or $f_{12}(\lambda, n), f_{22}(\lambda, n)$ are first-order polynomials in λ or zero-order polynomial in λ, respectively. From (22), we obtain

$$
\begin{equation*}
1+\lambda_{i} a_{n}=-b_{n} \alpha_{i}(n) \quad 1+\lambda_{i} d_{n}=-\lambda_{i} c_{n} \alpha_{i}^{-1}(n) \quad i=1,2 \tag{36}
\end{equation*}
$$

By using (36) and (23), it can be verified that λ_{1} and λ_{2} are roots of $f_{i j}(\lambda, n), i, j=1,2$. Therefore, noticing (29) we have

$$
T_{n+1} U_{n} T_{n}^{*}=\left(\operatorname{det} T_{n}\right)\left(P_{n}^{(0)}+\lambda P_{n}^{(1)}\right) \quad P_{n}^{(1)}=\left(\begin{array}{cc}
p_{11}^{(1)}(n) & 0 \tag{37}\\
p_{21}^{(1)}(n) & 0
\end{array}\right)
$$

where $P_{n}^{(0)}$ and $P_{n}^{(1)}$ are independent of λ. Equation (37) can be written as

$$
\begin{equation*}
T_{n+1} U_{n}=\left(P_{n}^{(0)}+\lambda P_{n}^{(1)}\right) T_{n} \tag{38}
\end{equation*}
$$

Equating the coefficients of λ and λ^{0} in (38), we find

$$
\begin{align*}
& P_{n}^{(0)}=\left(\begin{array}{cc}
1 & \hat{u}_{n} \\
0 & 1
\end{array}\right) \tag{39}\\
& p_{11}^{(1)}(n)=u_{n} v_{n}+v_{n} b_{n+1}+\Delta a_{n}-\left(u_{n}+\Delta b_{n}\right) c_{n} \quad p_{21}^{(1)}(n)=\hat{v}_{n}
\end{align*}
$$

Substituting (26) into (39) yields

$$
p_{11}^{(1)}(n)=\left(u_{n}+\Delta b_{n}\right)\left(v_{n}+\Delta c_{n}\right)=\hat{u}_{n} \hat{v}_{n} .
$$

The proof is completed.
Now let us consider the time part of the Lax pair for (2)

$$
y_{n t}=V_{n}^{(0)} y_{n} \quad V_{n}^{(0)}=\left(\begin{array}{cc}
\frac{1}{2} \lambda & v_{n}^{-1} \tag{40}\\
\lambda u_{n-1}^{-1} & -\frac{1}{2} \lambda
\end{array}\right) .
$$

Differentiating $\hat{y}_{n}=T_{n} y_{n}$ with respect to t yields

$$
\begin{equation*}
\hat{y}_{n t}=\hat{V}_{n}^{(0)} \hat{y}_{n} \quad \hat{V}_{n}^{(0)}=\left(T_{n t}+T_{n} V_{n}^{(0)}\right) T_{n}^{-1} \tag{41}
\end{equation*}
$$

Let the two basic solutions ϕ, ψ of (1) satisfy equation (40) as well. Then we can prove the following assertion.

Proposition 2. The matrix $\hat{V}_{n}^{(0)}$ defined by (41) has the same form as $V_{n}^{(0)}$, in which the old potentials u_{n}, v_{n} are mapped into \hat{u}_{n}, \hat{v}_{n} according to the same DT (34).

Proof. Let $T_{n}^{-1}=T_{n}^{*} / \operatorname{det} T_{n}$ and

$$
\left(T_{n t}+T_{n} V_{n}^{(0)}\right) T_{n}^{*}=\left(\begin{array}{ll}
g_{11}(\lambda, n) & g_{12}(\lambda, n) \tag{42}\\
g_{21}(\lambda, n) & g_{22}(\lambda, n)
\end{array}\right) .
$$

Through direct calculations, we know that $\lambda^{-1} g_{11}, \lambda^{-1} g_{21}, \lambda_{22}^{-1}$, and g_{12} are quadratic polynomials in λ. By virtue of (36), (23) and (41), we have

$$
\begin{align*}
& \lambda_{i} a_{n t}=-b_{n t} \alpha_{i}(n)-b_{n} \alpha_{i t}(n) \\
& d_{n t}=-c_{n t} \alpha_{i}^{-1}(n)+c_{n} \alpha_{i}^{-2}(n) \alpha_{i t}(n) \tag{43}\\
& \alpha_{i t}(n)=\lambda_{i} u_{n-1}^{-1}-\lambda_{i} \alpha_{i}(n)-v_{n}^{-1} \alpha_{i}^{2}(n)
\end{align*}
$$

It is easily verified by (36) and (43) that λ_{1} and λ_{2} are roots of $g_{i j}(\lambda, n), i, j=1,2$. Therefore we have

$$
\left(T_{n t}+T_{n} V_{n}^{(0)}\right) T_{n}^{*}=\left(\operatorname{det} T_{n}\right)\left(\begin{array}{cc}
\lambda q_{n}^{(11)} & q_{n}^{(12)} \\
\lambda q_{n}^{(21)} & \lambda q_{n}^{(22)}
\end{array}\right)
$$

that is

$$
\left(T_{n t}+T_{n} V_{n}^{(0)}\right)=\left(\begin{array}{cc}
\lambda q_{n}^{(11)} & q_{n}^{(12)} \tag{44}\\
\lambda q_{n}^{(21)} & \lambda q_{n}^{(22)}
\end{array}\right) T_{n}
$$

where $q_{n}^{i j}(i, j=1,2)$ are independent of λ. Comparing the coefficients of λ^{2} and λ in (44), we get
$q_{n}^{(11)}=\frac{1}{2} \quad q_{n}^{(22)}=\frac{1}{2} \quad q_{n}^{(21)}=\frac{1}{a_{n} u_{n-1}}\left(u_{n-1} c_{n}+d_{n}\right) \quad q_{n}^{(12)}=\frac{a_{n}-b_{n} v_{n}}{d_{n} v_{n}}$
which together with $(27,28)$ imply

$$
q_{n}^{(21)}=\frac{1}{u_{n-1}+\Delta b_{n-1}}=\frac{1}{\hat{u}_{n-1}} \quad q_{n}^{(12)}=\frac{1}{v_{n}+\Delta c_{n}}=\frac{1}{\hat{v}_{n}} .
$$

Since the differential-difference equation (2) is equivalent to the discrete zero-curvature equation, $U_{n t}+U_{n} V_{n}^{(0)}-V_{n+1}^{(0)} U_{n}=0$, from propositions 1 and 2 we have the following.
Proposition 3. Every solution (u_{n}, v_{n}) of (2) is mapped into a new solution (\hat{u}_{n}, \hat{v}_{n}) of (2) under the DT (34).

In what follows, we shall apply the DT to give explicit solutions of (2). Substituting the trivial solutions, $u_{n}=v_{n}=1$, of (2) into (1) and (40), two real basic solutions ϕ_{n}, ψ_{n} are chosen as

$$
\begin{aligned}
& \beta^{n} \exp \left(\frac{t}{2} \sqrt{\lambda^{2}+4 \lambda}\right)\binom{2}{\sqrt{\lambda^{2}+4 \lambda}-\lambda} \\
& \beta^{-n} \exp \left(-\frac{t}{2} \sqrt{\lambda^{2}+4 \lambda}\right)\binom{2}{-\lambda-\sqrt{\lambda^{2}+4 \lambda}}
\end{aligned}
$$

with $\beta=\frac{1}{2}\left(2+\lambda+\sqrt{\lambda^{2}+4 \lambda}\right), \lambda \in I_{0}=(-\infty,-4) \cup(0,+\infty)$. Noticing (22) and (23), new explicit solutions of (2) are obtained with the help of the DT (34):

$$
\begin{align*}
& \hat{u}_{n}=1+\Delta \frac{\left(\beta_{1}^{2 n} \mathrm{e}^{\delta_{1} t}-\gamma_{1}\right)\left(\beta_{2}^{2 n} \mathrm{e}^{\delta_{2} t}-\gamma_{2}\right)}{\xi_{1}+\xi_{2} \beta_{1}^{2 n} \mathrm{e}^{\delta_{1} t}+\xi_{3} \beta_{2}^{2 n} \mathrm{e}^{\delta_{2} t}+\xi_{4}\left(\beta_{1} \beta_{2}\right)^{2 n} \mathrm{e}^{\left(\delta_{1}+\delta_{2}\right) t}} \tag{46}\\
& \hat{v}_{n}=1+\Delta \frac{\left(\beta_{1}^{2 n} \mathrm{e}_{1 t}^{\delta_{1}}+\eta_{1}\right)\left(\beta_{2}^{2 n} \mathrm{e}^{\delta_{2} t}+\eta_{2}\right)}{\zeta_{1}+\xi_{2} \beta_{1}^{2 n} \mathrm{e}_{11}+\zeta_{3} \beta_{2}^{2 n} \mathrm{e}^{\delta_{2} t}+\zeta_{4}\left(\beta_{1} \beta_{2}\right)^{2 n} \mathrm{e}^{\left.\delta_{1}+\delta_{2}\right) t}}
\end{align*}
$$

where

$$
\begin{aligned}
& \delta_{i}=\sqrt{\lambda_{i}^{2}+4 \lambda_{i}} \quad \beta_{i}=\beta\left(\lambda_{i}\right) \quad \eta_{i}=\frac{\gamma_{i}\left(\delta_{i}+\lambda_{i}\right)}{\delta_{i}-\lambda_{i}} \quad i=1,2 \\
& \xi_{1}=\frac{\gamma_{1} \gamma_{2}\left(\delta_{1} \lambda_{2}-\delta_{2} \lambda_{1}\right)}{2\left(\lambda_{2}-\lambda_{1}\right)} \quad \xi_{2}=\frac{\gamma_{2}\left(\delta_{1} \lambda_{2}+\delta_{2} \lambda_{1}\right)}{2\left(\lambda_{2}-\lambda_{1}\right)} \\
& \xi_{3}=\frac{\gamma_{1}\left(\delta_{1} \lambda_{2}+\delta_{2} \lambda_{1}\right)}{2\left(\lambda_{1}-\lambda_{2}\right)} \quad \xi_{4}=\frac{\delta_{1} \lambda_{2}-\delta_{2} \lambda_{1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \\
& \zeta_{1}=\frac{2 \lambda_{1} \lambda_{2} \gamma_{1} \gamma_{2}\left(\delta_{1}-\delta_{2}+\lambda_{1}-\lambda_{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\delta_{1}-\lambda_{1}\right)\left(\delta_{2}-\lambda_{2}\right)} \quad \zeta_{2}=\frac{2 \lambda_{1} \lambda_{2} \gamma_{2}\left(\delta_{1}+\delta_{2}-\lambda_{1}+\lambda_{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\delta_{1}-\lambda_{1}\right)\left(\delta_{2}-\lambda_{2}\right)} \\
& \zeta_{3}=\frac{2 \lambda_{1} \lambda_{2} \gamma_{1}\left(\delta_{1}+\delta_{2}+\lambda_{1}-\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\delta_{1}-\lambda_{1}\right)\left(\delta_{2}-\lambda_{2}\right)} \quad \zeta_{4}=\frac{2 \lambda_{1} \lambda_{2}\left(\delta_{1}-\delta_{2}-\lambda_{1}+\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\delta_{1}-\lambda_{1}\right)\left(\delta_{2}-\lambda_{2}\right)} .
\end{aligned}
$$

Figure 1. The two-soliton solutions with $\gamma_{1}=-3, \gamma_{2}=5, \lambda_{1}=-5, \lambda_{2}=-10$.

The solutions (46) are two-soliton solutions if the parameters are chosen as $\gamma_{1}=-3$, $\gamma_{2}=5, \lambda_{1}=-5, \lambda_{2}=-10$ (see figure 1). Further, if the two-soliton solutions are taken as the new starting point, we can make the DT once again by (34) and engender another set of new solutions. This process can be done continually and will usually yield a series of multi-soliton solutions.

This work was partially supported by Hong Kong RGC/97-98/21. Project 19671074 was supported by National Natural Science Foundation of China. XGG would like to thank the Henan Science Foundation Committee of China for financial support. We would like to thank Professor Zhu Siming for his help in drawing the figure by computer.

References

[2] Schilling R J 1989 J. Math. Phys. 30 1487-501
[3] Tu G Z 1990 J. Phys. A: Math. Gen. 233903
[4] Merola I, Ragnisco O and Tu G Z 1994 Inverse Problems 101315
[5] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphia, PA: SIAM)
[6] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin: Springer)
[7] Levi D 1988 Inverse Problems 4165
[8] Gu C H and Zhou Z X 1994 Lett. Math. Phys. 321

